Activity | Predecessors | Three time Estimates | ||
a | m | b | ||
A | --- | 1 | 2 | 3 |
B | A | 3 | 5 | 7 |
C | A | 6 | 10 | 14 |
D | A | 4 | 6 | 8 |
E | B,C,D | 8 | 9 | 10 |
F | E | 2 | 4 | 6 |
G | F | 1 | 3 | 5 |
STEP-1: CALCULATE Te.
Te = (a+4m+b)/6
Activity | Predecessors | Three time Estimates | Te | ||
a | m | b | |||
A | --- | 1 | 2 | 3 | 2 |
B | A | 3 | 5 | 7 | 5 |
C | A | 6 | 10 | 14 | 10 |
D | A | 4 | 6 | 8 | 6 |
E | B,C,D | 8 | 9 | 10 | 9 |
F | E | 2 | 4 | 6 | 4 |
G | F | 1 | 3 | 5 | 3 |
STEP-2: CALCULATE STANDARD DEVIATION (S.D)
S.D = (b-a)/6
Activity | Predecessors | Three time Estimates | Te | S.D | ||
a | m | b | ||||
A | --- | 1 | 2 | 3 | 2 | 0.33 |
B | A | 3 | 5 | 7 | 5 | 0.67 |
C | A | 6 | 10 | 14 | 10 | 1.33 |
D | A | 4 | 6 | 8 | 6 | 0.67 |
E | B,C,D | 8 | 9 | 10 | 9 | 0.33 |
F | E | 2 | 4 | 6 | 4 | 0.67 |
G | F | 1 | 3 | 5 | 3 | 0.67 |
STEP 3: CALCULATE VARIANCE(V)
V= (S.D)2
Activity | Predecessors | Three time Estimates | Te | S.D | VARIANCE | ||
a | m | b | |||||
A | --- | 1 | 2 | 3 | 2 | 0.33 | 0.11 |
B | A | 3 | 5 | 7 | 5 | 0.67 | 0.44 |
C | A | 6 | 10 | 14 | 10 | 1.33 | 0.78 |
D | A | 4 | 6 | 8 | 6 | 0.67 | 0.44 |
E | B,C,D | 8 | 9 | 10 | 9 | 0.33 | 0.11 |
F | E | 2 | 4 | 6 | 4 | 0.67 | 0.44 |
G | F | 1 | 3 | 5 | 3 | 0.67 | 0.44 |
STEP 4: CALCULATE VARIANCE FOR THE CRITICAL PATH
(neglect the nodes which are not a part of critical path)
Activity | Predecessors | Three time Estimates | Te | S.D | VARIANCE | VARIANCE OF CRITICAL PATH | ||
a | m | b | ||||||
A | --- | 1 | 2 | 3 | 2 | 0.33 | 0.11 | à 0.11 |
B | A | 3 | 5 | 7 | 5 | 0.67 | 0.44 | - (node is not a part of critical path) |
C | A | 6 | 10 | 14 | 10 | 1.33 | 1.78 | à1.78 |
D | A | 4 | 6 | 8 | 6 | 0.67 | 0.44 | - (node is not a part of critical path) |
E | B,C,D | 8 | 9 | 10 | 9 | 0.33 | 0.11 | à0.11 |
F | E | 2 | 4 | 6 | 4 | 0.67 | 0.44 | à0.44 |
G | F | 1 | 3 | 5 | 3 | 0.67 | 0.44 | à0.44 |
STEP-5: CALCULATE TOTAL OF CRITICAL PATH VARIANCE
Activity | Prede cessors | Three time Estimates | Te | S.D | VARIANCE | VARIANCE OF CRITICAL PATH | ||
a | m | b | ||||||
A | --- | 1 | 2 | 3 | 2 | 0.33 | 0.11 | à 0.11 |
B | A | 3 | 5 | 7 | 5 | 0.67 | 0.44 | - (node is not a part of critical path) |
C | A | 6 | 10 | 14 | 10 | 1.33 | 1.78 | à1.78 |
D | A | 4 | 6 | 8 | 6 | 0.67 | 0.44 | - (node is not a part of critical path) |
E | B,C,D | 8 | 9 | 10 | 9 | 0.33 | 0.11 | à0.11 |
F | E | 2 | 4 | 6 | 4 | 0.67 | 0.44 | à0.44 |
G | F | 1 | 3 | 5 | 3 | 0.67 | 0.44 | à0.44 |
TOTAL OF CRITICAL PATH VARIANCE | 2.89 |
STEP-6: CALCULATE THE S.D OF CRITICAL PATH
S.D = √ (VARIANCE OF CRITICAL PATH)
S.D = √2.89 = 1.699
STEP-7: CALCULATE THE VALUE OF Z
Z = (x - µ) / (S.D)
Z= (39-28)/1.699 = 6.47
Here,
x= total estimate time ( ∑Te )
µ= ( ∑Te ), includes only the critical path nodes
µ= ( ∑Te ), includes only the critical path nodes
STEP 8: CALCULATE THE PROBABILITY
PROBABILITY = NORMSDIST(Z)
PROBABILITY = NORMSDIST(6.47) = 1 = 100%
-----------------------------------------------------------------------
0 comments:
Post a Comment